

Evaluation of NCAR CAM3 Water Vapor with Modeled and Observed AIRS Cloud-Cleared Radiances

Michael J. Iacono
Atmospheric and Environmental Research, Inc., Lexington, MA

AIRS Science Team Meeting, 29 March 2007

Objective:

Use modeled and observed cloud-cleared AIRS radiance spectra to evaluate water vapor and temperature simulation in CAM3

Data:

AIRS V4 L1B radiance spectra

- Channels with non-zero QA flags were excluded
- Only two cross-track scan angles nearest nadir (+/- 0.5 deg) were used in spatial averaging
- Cloud-cleared spectra defined as having channel 857 (943.2 cm⁻¹) brightness temperature within 5 K of local AIRS L3 surface temperature (over ocean)
- Radiances averaged over low and mid-latitude ocean regions (selected to avoid cloudiest areas)

AIRS V4 L3 water vapor, temperature, surface temperature

Focus on 300 mb and 500 mb

Models:

NCAR CAM3 (Community Atmosphere Model)
OSS (Optimal Spectral Sampling - AER)

Used to simulate clear sky AIRS radiances in CAM3
 RRTMG/McICA (Broadband LW and SW radiative transfer - AER)

- Used as replacement radiation model in CAM3
- McICA is stochastic technique for handling cloud overlap and sub-grid cloud variability (Pincus et al., 2003)

GCM Simulations:

- (1) CAM3_OSS
- (2) CAM3_RRTMG/McICA_OSS
 - Additional output: 6-hourly BT spectra in three intervals:

Temperature: 700-750 cm⁻¹

Window: 937-952 cm⁻¹

Water Vapor: 1340-1570 cm⁻¹

• Cloud filtering: Exclude clear sky spectra where model has

cloud fraction > 0.3 above 700 mb

Initial Step: (presented to AIRS ST in Dec 2004)Compare OSS to LBLRTM for variable set of profiles

OSS within
0.2 K of
LBLRTM
across water
vapor band

GCM Simulations: (January and July 2004)

Ocean regions analyzed

- Exclude cloudiest eastern ocean and Warm-Pool areas
- Will focus on Pacific regions

Temperature:

300 mb, January and July 2004

AIRS L3

CAM3_ RRTMG

CAM3

Temperature Differences:

300 mb, January and July 2004

CAM3_ RRTMG - AIRS

CAM3 - AIRS

Temperature and Mean Spectral Differences:

300 mb, January 2004

Temperature and Mean Spectral BT Differences:

300 mb, January 2004

From LBLRTM: 2 K decrease in tropospheric temperature ~ 1 K decrease in BT in this band

Water Vapor:

300 mb, January and July 2004, specific humidity (g/kg)

AIRS L3

CAM3_ RRTMG

CAM3

Water Vapor Differences:

300 mb, January and July 2004, percent

CAM3_ RRTMG - AIRS

CAM3 - AIRS

300 mb, January 2004

From LBLRTM: 15% increase in water column ~ 1 K decrease in BT in this band

300 mb, January 2004

Water Vapor:

500 mb, January and July 2004, specific humidity (g/kg)

AIRS L3

CAM3_ RRTMG

CAM3

Water Vapor Differences:

500 mb, January and July 2004, percent

CAM3_ RRTMG - AIRS

CAM3 - AIRS

500 mb, July 2004

500 mb, July 2004

Summary:

- Using OSS to model clear sky AIRS spectral radiances in CAM3
- Comparing CAM3_OSS and AIRS radiance differences to evaluate model water and temperature
- Provides a relative method to validate AIRS L3 retrieved atmospheric state?
- Spectral BT differences in temperature band show CAM3 1-2 K cooler relative to AIRS L1B; comparison of CAM3 and AIRS L3 temperatures are closer
- Spectral BT differences in water vapor band show significant moist biases of 50-100% or more in CAM3 in some regions and levels; model moist biases even larger in comparison of CAM3 and AIRS L3 water vapor
- Results in some regions are sensitive to impact of RRTMG in CAM

Future Work:

- OSS with multiple scattering now available
- Use OSS to model cloudy radiances from CAM3 output
- Compare to AIRS cloudy radiances